KHDbdcm

Warm Up	Metric Conversions	Date:
1. Convert 5,000 centimeter meters. 5000.	a.	Jenny wants to pour 483 milliliters is poured into a one liter container. Will the container overflow?
3. Jamie rain 12 327 decime		How many liters is this?
3. Jamie rain 12,327 decime many kilometers did he ru 1232 1,237 K	Z	Sandi needs 68.5 grams of sugar for a recipe. She has .2 hectograms. (8.5 a. How many grams is this? 209 b. Is it enough for her recipe? 70

Facts to know!

1,000 meters is the same asKilometers.
There are centimeters in a meter.
It takes milliliters to make 1 Liter.
There are grams in a kilogram.

Name:	Date: _	b
	Unit Conversions (English System)	

D	:-	10	-	-	-	
ν	12	ra	п	C	е	

1 mile = 5,280 feet

1 vard = 3 feet

1 foot = 12 inches

Weight

1 ton = 2,000 pounds

1 pound = 16 ounces

Volume (liquids):

1 gallon = 4 quarts

1 pint = 2 cups

1 cup = 8 ounces

To Convert Between English and Metric:

1 inch = 2.54 cm.

1 pound = 454 grams

1 quart = 946 mL

Steps: 1) Determine initial unit and quantity.

Determine final unit, and make a unit plan.

Determine conversion factor(5)

(4) Multiply initial unit & quantity by the conversion factor(s). * * make sure diagonal units match*

Perform the following conversion: miles +++

1. Convert 6 miles to feet

2. Convert 7 quarts gallons $gt \rightarrow gal$

in +ft + miles

3. Convert 3,200 inches to miles

wk → day → hr → min

4. Convert 14 weeks to minutes

141,120 mi

N	1	m	0		
IN	u	111	\Box		

Date:_

Interpret Language in Math Expressions - NOTES

Definitions:

Vocabulary	Definition	Examples
Algebraic Expression	 A mathematical phrase that contains operations, numbers, and/or variables. 	1) $5x + 7$ 2) $3x^2 - 2x + 5$
	 Does NOT contain an equal sign. 	2) 32 22 . 3
Variable	A symbol used to represent a quantity that can change. "Un known	x,y,z, O
Term	A part of an expression.	5x,7,3x2,2x
161111	Separated by "+" and/or "-"	5
Like Terms	 Terms with the same variables raised to the same exponents. 	$4x^2$, $6x^2$
Coefficient	 A number multiplied by a variable. 	4 x 2
Coemcient	• Located in front of the variable.	****
Exponent	 The number that indicates how many times the base is being multiplied by itself 	3 = 3.3.3.3 = 81 x = x.x.x.x.x
×	 Little # at the top right of a # 	
Base	 The # in a power that is used as a factor The big # under the exponent 	3 base base 62 = 36
	 A term that does NOT contain a variable 	3x2-5x +2
Constant	 A # that stands alone 	Constant
	Normally at the end	
Eggton	 #'s or variables that are multiplied 	2x + 4
Factors	• Separated by "·"	2(x+2)
Order of Operations	· PEMDAS Exponents	(10:2+3)

Muit. Divi Add Subtract

Name:	ame: Date:							
	Classifying Polynomials An expression w/							
Polynom	ials are named ac	cording to their dec	ree	and norther of	40,7113			
	ynomial with one s s the highest		Terms a	re separated by p	lus or			
Degree	Name	Example	Terms	Name	Example			
K 0	Constant	7	1	monomial	5X			
¥ 1	lineak	5x +3	2	binomial	2x+5			
L 2	Quadratic	3x2+2x+7	3	trinomial	$\chi^2 + 3\chi + 1$			
3	Cubic	$\chi^3 - 7\chi$	4+		x4+7x2-3x+2			
4	Quartic	$7x^4 + 2x^2 - 5$	Exampl	es: $x^3 + 6x^2 + 12x + 8$	ubic polynomial monomial			
5	Quintic	χ^5 - $2x-3$	2. 3	8 Constant Part Linear	monomia I Rinomia I			

Standard Form

- The terms of a polynomial are in <u>standard form</u> if they are ordered from left to right in descending order; which means from the highest exponent to the least.
- The coefficient of the first term is called the Leading Coefficient
 Example: Write 9+x-4x³ in Standard Form: -4x³+x+9 "cubic trinomia.
- Example: Write 9+x-4x° in Standard Form: -5x³ +3x² +4x-2
 Example: Write 3x²-2+4x-5x³ in Standard Form: -5x³ +3x² +4x-2
 "Cubic Polynomial"

3. 2x+4 Linear Binomial

You try:

Polynomial	Standard Form	Degree	# of Terms	NAME
8x	8x	1	1	Linear monomial
$3 + 4x^2 + 2x$	$4x^2+2x+3$	2	3	Quadratic Trinomial
$5x^3 + x^2$	$\chi^2 + 5\chi^3$	2	2	Quadratic Binomial
$6 + 3x^2 - 4x - 2x^4$	2x4+3x2-4x+6	4	4	Quartic Polynomial

Remember Like Terms: two or more terms of a polynomial with the same variable raised to the same exponent

Examples: Simplify by following order of operations and combining like terms. Write in standard form.

1.
$$(4x^2 + 6x + 7) + (2x^2 - 9x + 1)$$

$$6x^{2} - 3x + 8$$

Quadratic trinomial

Lead coeff: (o constant: 8

2.
$$(7x^3 - 5x + 3) - (7x - 4x^2 + 9)$$

 $7x^3 - 5x + 3 - 7x + 4x^2 - 9$

$$7x^3 + 4x^2 - 12x - 6$$

Cubic Polynomial Distribute

3.
$$(2p^3 + 10p - 6p^2) + (11p^2 - 3p + 4p^3)$$

Cubic Trinomial

4.
$$(v^3 + 6v^2 - v) - (9v^3 - 7v^2 + 3)$$

$$\frac{v^3 + 10v^3 - v - 9v^3 + 7v^2 - 3}{w}$$

$$-8v^3 + 13v^2 - V - 3$$

Coefficients:
$$(2x^3-3x+5x^2-8) = (x^3-8x^2+11x)$$

$$2x^3 - 3x + 5x^2 - 8 - x^3 + 8x^2 - 11x$$

$$\chi^3 + 13x^2 - 14x - 8$$

6.
$$3(-3x^3+2x-4)+(4x^3+3x^2+2)$$

$$-9x^3 + 6x - 12 + 4x^3 + 3x^2 + 2$$

$$-5x^3+3x^2+6x-10$$

Cubic polynomial

7.
$$(4xy-x^2)-(x^2y-7x^2+9xy)$$

$$\frac{4xy - x^2 - x^2y + 7x^2 - 9xy}{\sqrt{-5xy + 6x^2 - x^2y}}$$

Applications:

8. Find the perimeter if this is a rectangle:

$$3x^{2} + 5x$$

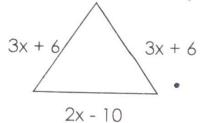
$$2x^{2} - 4x$$

$$2x^{2} - 4x$$

$$2x^{2} - 4x$$

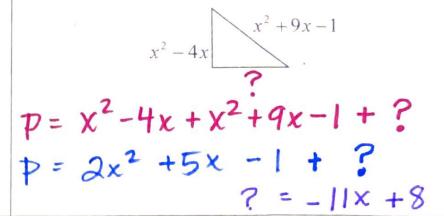
$$2x^{2} + 5x$$

$$2x^{2} + 5x$$

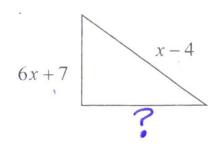

$$2x^{2} + 5x$$

$$2x^{2} + 5x$$

$$P = \frac{3(3x^{1} + 3x)}{4x^{2} - 8x}$$


$$P = \frac{10x^{2} + 3x}{4x^{2} - 8x}$$

10. Find the perimeter: P = S + S + S



$$P = 8x + a$$

9. Find the missing side if the perimeter is $2x^2 - 6x + 7$

11. Find the missing side if the perimeter is 8x-5

$$P = 6x + 7 + x - 4 + ?$$

$$= 7x + 3 + 3$$

$$? = x - 8$$

Name: Date:

Multiplying Polynomials

When multiplying polynomials, use the <u>distributive</u> property!!!

Examples:

1.
$$5(x+6)$$

3.
$$(-2x)(x^2-4x+2)$$
 * watch your signs *

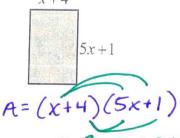
5.
$$(x+9)(x-3)$$

 $x^2-3x+9x-27$

$$x^{2} - 3x + 9x - 27$$

$$x^{2} + 6x - 27$$

7.
$$(2x+5)(x+6)$$


$$2x^{2}+12x+5x+30$$
 $2x^{2}+17x+30$

9.
$$(5b-6)(3b^2-2b+5)$$

$$|5b^3 - 10b^2 + 25b - 18b^2 + 12b - 30$$

 $|5b^3 - 28b^2 + 37b - 30$

$$7x+10$$

$$4x+8$$

$$A = 5x^2 + 21x + 4$$

2.
$$\frac{x^2(x+6)}{x^3+6x^2}$$
 you add their exponents *

4.
$$(x-2)(x+4)$$
 # Double
 $x^2 + 4x - 2x - 8$ Distribution #
 $(x^2 + 2x - 8)$

8.
$$(3x-1)(2x-4)$$

$$6x^{2}-12x-2x+4$$
 $6x^{2}-14x+4$

12.
$$V = X(X+G)(X+3)$$

$$x+6 = x(x^2+3x+6x+18)$$

$$\sqrt{=\chi(\chi^2+9\chi+18)}$$

$$\sqrt{y} = \chi^3 + 9\chi^2 + 18\chi$$

$\sqrt{Radicand}$

Name:

Radicals Notes

1. Perfect Squares

$$1^{2} = 1$$
 $5^{2} = 25$ $9^{2} = 81$ $13^{2} = 169$
 $2^{2} = 4$ $6^{2} = 36$ $10^{2} = 100$ $14^{2} = 196$
 $3^{2} = 9$ $7^{2} = 49$ $11^{2} = 121$ $15^{2} = 225$
 $4^{2} = 16$ $8^{2} = 64$ $12^{2} = 144$ $16^{2} = 256$

Ferrect squares
$$5^2 = 25$$
 $9^2 = 81$ $13^2 = 169$ $17^2 = 289$ $10^2 = 210$ $19^2 = 324$

$$11^2 = 121$$
 $15^2 = 225$

2. Take the square Root.

a.
$$\sqrt{16} = 4$$

b.
$$\sqrt{25} = 5$$

c.
$$\sqrt{100} = 10$$

evenly into the radicand.

d.
$$\sqrt{32} = \frac{4\sqrt{3}}{10} \sqrt{\frac{10}{3}}$$

e.
$$\sqrt{48} = 4\sqrt{3} \sqrt{16 \cdot 3}$$

f.
$$\sqrt{80} = 415 \sqrt{16.5}$$

3.
$$\sqrt{75}$$

$$\sqrt{25 \cdot 3}$$

$$\sqrt{5}\sqrt{3}$$

4.
$$\sqrt{20}$$

 $6\sqrt{16}$

7.
$$-5\sqrt{12}$$

$$-8\sqrt{32}$$

 $\chi^2 \cdot \chi = \chi^3$ $\chi^3 \cdot \chi^3 = \chi^6$ x5. x5 = X10 $\sqrt{Radicand}$ Name: is odd, you will $10. \sqrt{216x^3}$ 9. When there's a variable.... # when the √36.6 X3 $\sqrt{150b^4}$ have Jone variable even divide $6\sqrt{6 \cdot x^2 \cdot x}$ left underneath √25·6·64 it by two to the vadical # $12. \sqrt{8n^2}$ 11. $\sqrt{18k^2}$ 14.2.n2 19.2.K2 14. Putting it all together. tany variable 13. $\sqrt{63}x$ to the 1st $3\sqrt{192x^4y^2}$ power 9.7·x Stays under the radical * 16. $4\sqrt{45y^6}$ 15. $2\sqrt{98y^5}$ 4 9.504

RADICALS QUIZ REVIEW WARM UP

Date:

Classifying Rational & Irrational Numbers

Today's Question: What is the result of the product of a rational number with an irrational number? MCC9-12.N.RN.3

Rational Numbers

Irrational Numbers

Non-repeating decimal, or

Non-perfect square radicals

Terminating decimal **TractionS

Examples:

that are

$$\frac{7}{8} = 875$$

7/8 = .875 integer over integer #

$$\frac{123}{1000}$$
 = .123

Examples:

Non-terminating,

Repeating decimal or Pattern

Examples:

$$\frac{2}{3} = .6$$

$$\frac{123}{999} = 123$$

$\pi = 3.1415...$

$$\sqrt{8} = 2\sqrt{2}$$
 Perfect Square!

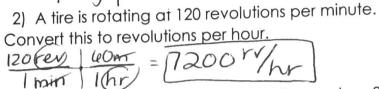
Radicals with Perfect Squares

Examples:
$$(8+\sqrt{2})(8-\sqrt{2})$$
 = $(62)(8+\sqrt{2})($

$$\frac{\sqrt{3}}{4}$$
 NOT A Perfect Square!

$$\sqrt{8} + \sqrt{2}$$
 Not a ferfect Square.

$$4\sqrt{2} - 2\sqrt{8} \qquad = \sqrt{0}$$


Facts to know Rational vs Irrational

Based on the above information, conjecture which of the statements is ALWAYS true, which is SOMETIMES true, and which is NEVER true?

- 1. The sum of a rational number and a rational number is rational. Always
- 2. The sum of a rational number and an irrational number is irrational. Always
- 3. The sum of an irrational number and an irrational number is irrational. Sometimes
- 4. The product of a rational number and a rational number is rational. Away5
- 5. The product of a nonzero rational number and an irrational number is irrational. psways
- 6. The product of an irrational number and an irrational number is irrational. Sometimes

Topic 1 - Unit Conversions

1) A big	g bowl o	f Mac and Che	ese weighs 80 grams.
How he	eavy is it	in kg?	
80g	1 Kg 1000g	-[.08 kg]	

3) A car is traveling	102.667 fee	et per sec	econd, how fast is that in miles per	
102.667ft	I mile	60,SEC	160mm 57/mu/	
1 Sec.	5280f+	Imm	The Thr	• -

4) Sabrina wants to have a pizza party and invite 30 of her closest friends. She called Papa Johns and found that a large pizza cost \$9.50 and is cut into 8 slices. If she wants each guest to get 2 pieces each, how much is she going to have to spend on pizza? Show all unit conversion work to get full credit. 30 friends | 2511 ces | 1 pizza = 7.5 pizzas so 8 I friend | 851 ces | 8 x 9.50 (-\$76)

Topic 2 – Identifying Parts of an Expression

- 1) How many terms are in the expression $x^3 18x^2 + 8x 9$? 4 terms
- 2) Identify and label each of the following for the above expressions

=1			
Name By Degree	Name by # of Terms	List the Coefficients	List the Constants
cubic	polynomial	1,-18,8	-9

3) Simplify these polynomials and arrange in standard form, then name by degree and number of terms, and state the Leading Coefficient.

$$(3x^3 - 5x^2 + x) + (-4x^3 + 2x - 8)$$

 $-\chi^3 - 5\chi^2 + 3\chi - 12$

late the learning
Name by Degree: Cubic
Name by Number of Terms: Polynomial
Leading Coefficent:
Standard Form: $\chi^3 - 5\chi^2 + 3\chi - 12$

Topic 3: Operations with Polynomials

Simplify the following polynomials. Write your answer in standard form, and put a box around your final answer.

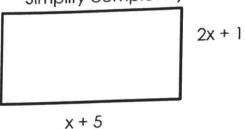
1.
$$(3x^3 - 5x^2 - x + 1) - (-2x^3 - x^2 + 3x - 5)$$

 $3x^3 - 5x^2 - x + 1 + 2x^3 + x^2 - 3x + 5$
 $5x^3 - 4x^2 - 4x + 6$
5.

2.
$$(4x + 5)^{2}(4x+5)$$

 $16x^{2} + 20x + 20x + 25$
 $16x^{2} + 40x + 25$

$$20x^{2} + 36x - 15x - 27$$


$$20x^{2} + 21x - 27$$

$$12x^{3} = 27x^{2} + 10x - 8x^{2} + 18x - 4$$

$$|2x^3 - 35x^2 + 24x - 4|$$

Find perimeter and area of the rectangle. Simplify completely.

$$P = 2(2x+1) + 2(x+5)$$

$$P = 4x+2 + 2x+16$$

$$P = 6x+12$$

$$A = (2x+1)(x+5)$$

= $2x^2+10x+x+5$

Station 4: Radicals

$\frac{1. \sqrt{18x^2}}{3x\sqrt{2}}$	$2. \sqrt{196x^7y^2}$ $14x^3y\sqrt{X}$	3) $\sqrt{24} + 3\sqrt{54}$ $2\sqrt{6} + 9\sqrt{6}$ $11\sqrt{6}$	4. $-2\sqrt{5x^4} - x^2\sqrt{5}$ $-2x^2\sqrt{5} - x^2\sqrt{5}$ $-3x^2\sqrt{5}$
5. $-2\sqrt{5} \cdot \sqrt{12}$ $-2\sqrt{60}$ $-2\sqrt{4.15}$ $-4\sqrt{15}$	6. √48y³ 4y√3y	$7.\sqrt{2}(3\sqrt{2}-6)$ $3.2-6\sqrt{2}$ $6-6\sqrt{2}$	8. $2\sqrt{63x^5y^8}$ $2\cdot 3x^2y^4\sqrt{7x}$ $\sqrt{6x^2y^4\sqrt{7x}}$

Station 5: Irrational vs. Rational

- 1. Which of the following is true?
 - A rational number plus a rational number equals a rational number True
 - B. An irrational number plus an irrational number equals a rational number
 - C. An irrational number plus a rational number equals a rational number
 - D. A rational number plus a rational number always equals an integer.
- 2. Simplify the following expressions, if possible. Then, identify the solution as rational or irrational, and state why this is the case.

a)
$$3\sqrt{36} - \sqrt{25}$$

c)
$$4 + \pi$$

b)
$$\sqrt{8} * \sqrt{2} + \sqrt{7}$$

d)
$$\sqrt{7} * \sqrt{7} = \sqrt{49} = 7$$